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1 Problem Statement

The project began as a effort to support InLight and Lumidigm. With the
sale of the companies to a non-New Mexico entity, the project then focused
on supporting a new company Medici Technologies.

The Small Business (SB) is attempting to quantify glucose in tissue using
a series of short interferometer scans of the finger. Each scan is produced
from a novel presentation of the finger to the device.

The intent of the project is to identify and, if possible, implement improved
methods for classification, feature selection, and training to improve the
performance of predictive algorithms used for tissue classification. The initial
task involves investigation of alternative methods for direct prediction of the
analyte or tissue component of interest. The second task will develop and
demonstrate improved classification capabilities on actual tissue data sets.

Deliverables include knowledge transfer of the methods investigated, results
generated, and the code used for processing of the data.
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2 Background

2.1 Analysis Background

The analysis by the SB was based on a linear discriminate analysis (LDA)
and ensembles of decision trees (like random forest) applied to the data for
the SB [Description of Data for Classifier Training v2.docx provided by SB].
For each subject, repeated measurements of the glucose level and the spectra
are available. Figure 1 depicts simulated spectra from a single measurement
for 20 subjects.
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Figure 1: Simulated Spectra for Twenty Subjects

The SB has found that the use of these standard methods for multi-class
classification and feature selection have proven inadequate.

Fundamental to this approach is that each class or cluster is associated
with a unique linear model for glucose prediction. These classification methods
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result in a ’crisp’ classification of subjects in to clusters. Crisp classification
indicates that the subjects are strictly in a single cluster; there is no overlap
between the membership in clusters. Subjects with a feature set close to those
already in a class are presumed to be characterized by the glucose prediction
model for that class.

Based upon the experience of the SB with the data, they observed the
following limitations of their approach. First, the use of linear models did
not appear to capture the true nature of the class boundaries encountered in
the data. Second, feature selection methods dont appropriately deal with the
multi-class classification case as the features optimal for the discrimination
between two classes, say A and B, are not necessarily the best features for
the discrimination between any other classes. Third, classes are often not
well balanced and due to the error structure one or more solutions may be
acceptable but from a training perspective this introduces noise.[Description
of Data for Classifier Training v2.docx provided by SB]

3 Alternative Approaches

As noted previously, the second task of the effort is to develop and demonstrate
improved classification capabilities on actual tissue data sets. Data sets were
provided too late in the project to implement the methods described below.
However sufficient detail is provided that will permit implementation of the
methods in either the JAGS or Stan open source programming languages.

The methods employed by the SB are common, popular approaches for
classification. However, they are limited in many respects. In particular,
they require the possibility of a linear boundary between classes; that is, the
classes are distinct and linearly separable.

Modern alternative methods allow for feature sets to have partial mem-
bership across multiple classes. The result is that each subject may have a
degree of membership in each class. This implies that the glucose prediction
model for each subject could be a linear mixture of linear models.

3.1 Extension to Existing SB Approach

First consider the situation where there are N classes. In the existing SB
approach a subject feature set is in either one or the other class. Alternatively,
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Figure 2: Crisp Tissue Classification
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consider relaxing this constraint such that there is a probability p1, p2, . . . , pN
that a a feature set is in one class or the other and

∑
N pi = 1.

The only distributional assumption with this method is that the log
likelihood ratio of class distributions is linear in the observations. This
assumption is verified by a large range of exponential density families, e.g.
normal, beta, gamma, etc. Further, the approach:

• does not make any assumptions of normality, linearity, and homogeneity
of variance for the independent variables.

• can be used to analyze relationships between a dichotomous (categorical)
dependent variable and metric or dichotomous independent variables.
The dependent variable can take on multiple values e.g. {Success,
Failure}, {red, blue, green, purple}, etc. Independent variables may be
either interval or categorical.

• estimates the probability that a particular set of values for the indepen-
dent variables is a member of a response category.

The minimum number of cases per independent variable is 10, using
a guideline provided by Hosmer and Lemeshow, while for stepwise logistic
regression a 50-1 ratio is preferred. The SB has multiple, repeated observations
for subject. Given:

log
f1(x)

f2(x)
= β0 + β1x + · · · (1)

where fi are class conditional parametric densities and β are model parameters.
Equivalently:

f(x) = g (β0 + β1x + · · ·) (2)

where: g(z) is the logistic function g(z) = 1/ (1 + exp−z) and f(x) = P (y =
1|x) is the probability of being in class 1. The likelihood function for the
data:

L(D, β) = P (D|β) =
n∏

j=1

P (y = yj|xj, β)

where xj is the vector of independent variables associated with the j-th
observation yj.
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Let πj = p(yj = 1|xj, β) = g(zj) = g(βTx). The likelihood function can
then be expressed:

L(D, β) =
n∏

j=1

P (y = yj|xj, β) =
n∏

j=1

π
yj
j (1− πj)1−yj

The log-likelihood is often more convenient: l(D, β) = logL(D, β). Our goal
is to maximize the likelihood function

L(D, β) =
n∏

j=1

P (y = yj|xj, β) =
n∏

j=1

π
yj
j (1− πj)1−yj

or, equivalently, minimize the error function: E(D, β) = −∑i l(Dj, β). Fig-
ure 3 depicts the conditional relationships between each of the variables in a
hierarchical Bayesian logistic regression.

yj

zj

xij

β0

βi

m0

τ0

m1

τ1

i,j
i

Figure 3: Hierarchical Model for Logistic Regression Classification

3.1.1 Logistic Regression with Measurement Error

Traditional regression models assume that the covariates are observed without
error; the only error being in the response. Alternatively, measurement error
models are regression models where the covariates are measured with error.

In the case of interest to the SB, the possibility exists that spectral features
are measured with error. In particular, the measurement error problems arise
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if instead of observing the covariate without error, at least one is measured
as an error-prone surrogate. Such problems are primarily concerned with
inference on regression parameters for an outcome Y on covariates X where
measurements on X are available only through the recording of an imperfect
surrogate w. It is well known that regressing Y on W and thus ignoring
errors can be seriously misleading.

Statistical models must be fit to data formulated in terms of well-defined
but unobservable variables X, using information on measurements W that
are less than perfectly correlated with X. W is said to be a surrogate for X.
There are a number of ways in which X and W can be related.

• Classical Error W = X+U , E(W |X) = X, E(U) = 0, U is independent
of X

• Berkson Error X = W +U , E(X|W ) = W , E(U) = 0, U is independent
of X

A classical rrror model is commonly assumed. Figure 4 depicts the
conditional relationships between each of the variables in a logistic regression
accounting for observational error.
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Figure 4: Hierarchical Model with Measurement Error
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Formally, we are trying to predict the probability that a feature set is in
class 1: Y = 1.

P{Y = 1|w1, w2, ...} =
1

1 + exp[−(β0 + β1w1 + β2w2 + . . .)]
(3)

=
exp(β0 + β1w1 + β2w2 + . . .)

1 + exp(β0 + β1w1 + β2w2 + . . .)
(4)

The summary of the hierarchical model with typical assumptions regarding
the prior distributions:

Yj ∼ Bern(πj)

log

(
πj

1− πj

)
= Zi = β0 + β1w1 + β2w2 + . . . , i = 1, . . . , n

Xj ∼ Bern(πxj
), j = 1, . . . , nc

Wxj
= α0 + αjXj

πxj
= 1/[1 + exp(−Wxi

)]

Wj ∼ Bern(πwj
)

Ek ∼ Cat(nj, πw), k = 1, . . . , ne

α0, αj ∼ N(0, 0.001)

β0, βi ∼ N(0, 0.001)

The following section describes an alternative method for direct prediction
of the analyte or tissue component of interest. This was the second task of
the effort.

4 Direct Prediction

As summarized previously, the intent of the project was to identify and, if
possible, implement improved methods for classification, feature selection,
and training to improve the performance of predictive algorithms used for
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tissue classification. In particular, the second task of the effort was to develop
and demonstrate the improved classification capabilities on either simulated
or actual tissue data sets.

4.1 Approach

The approach described here is sometimes referred to in regression analysis
as a random effects analysis. However, in Bayesian analysis this can be a bit
of a misnomer since the parameters are already assumed to be random.

Since the mathematics behind this approach are well established, the
discussion here provides a brief introduction. A thorough discussion to the
methods is provided in: [3, 2, 1].

It is assumed that the relationship between glucose measurements and
the spectral features involves nonlinear relationship where the parameters of
the function are random variables. The relationship between the variables is
conceptually the same as that depicted in Figure 3. The difference is that the
response is not the probability of class membership, but the actual glucose
observation.

μi

β0

βj

m0

τ0

m1

τ1

i,jyiτy

Figure 5: Hierarchical Model for Prediction

Hierarchical model summary with typical assumptions regarding the prior
distributions:

Zj ∼ N(µi, τ)

µi = β0i + β1iw1 + β2iw2 + . . . , i = 1, . . . , n
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βj ∼ N(µi, τi), j = 1, . . . , 196

τ ∼ Uniform(0, 10−4)

α0, αj ∼ N(0, 0.001)

β0, βi ∼ N(0, 0.001)

where n is the total number of observations, and 196 refers to the number of
spectra available (size of the feature space).

As with the classification model discussed previously, it is possible to
extend this model to include the possibility of error in measuring the spectra.
(Error in the glucose measurement is already accounted for in the model
above.) Insufficient information regarding the statistical characteristics of the
spectra was available (it has not been characterized by the SB). Unfortunately,
data was provided by the SB too late in the effort to implement and test the
above algorithms.
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